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C O N C E R N I N G  O F  A P A R T I C U L A R  I N V E R S E  P R O B L E M  

Yu. I. K a z a n t s e v  UDC 519.2:551.491.5 

A coefficient inverse problem for an elliptic equation with the coefficient in the form of a stationary random 

field is considered. 

For some time now, considerable attention has been paid to studying coefficient inverse problems in both 

heat conduction and hydrogeology [1-4 l. 

Let us consider the following problem of hydrogeology. A geological region is isolated where the water 

conductivity coefficient T is a stationary random field that has the constant mathematical expectation To and 

dispersion DT and whose correlation function Ka(h) is a function of a priori known form that depends on the 

parameter a. Pumping out with a constant output Q is done from one (experimental) well of radius p. Observational 

wells that change their head Hi are located around the experimental well on several circles of radii ri, where j is 

the number of the observational well on the circle with radius ri. 

The hydrogeological process is described by the following problem for an elliptic equation in polar 

coordinates: 

Or~ a~) r Or r oO 
(1) 

T(r,  0) = T(r ,  0 + 2: 0 ;  H( r ,  0) = H( r ,  0 + 2.n:); 

2.~ r=p - f dOrT~r  = Q; H I r = R = H a ,  
0 

(2) 

R >> p >0; Q, H a are constant; see [5 ]. 

The direct problem consists in solving Eqs. (1) and (2) with T in the form of one of the realizations of the 

random field. 

The inverse problem consists in finding the values of To, DT, and a from H i. 

For a model example, the results of solving the direct problem were used in which the entire region was 

divided into blocks of size lx (elements of inhomogeneity) on which the values of T were prescribed as independent 

Gaussian random values with identical To and DT. These calculations were performed by a grid method according 

to 161. 
v 

An algorithm for solving the coefficient inverse problem is presented as follows. Let T = T O + T, H = 
v V V 

Ho + H, Q = Qo + (~, where T, H, and Q are random components. According to 15 I, from Eqs. (1) and (2) we 

obtain that TO, Ho, (20, satisfy. Eqs. (1) and (2). The assumption that T O = const yields Ho(r, 0) = H0(r), and we 

have 

Let 

Q = L -ff-~ o o 
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TABLE 1. Input Data 

ri H ! 

10 

10 

20 

20 

2.34 

2.36 

2.07 

2.03 

30 

30 

42.5 

42.5 

57.5 

57.5 

1.94 

1.93 

1.45 

1.86 

1.1 

1.92 

7 v 1 7 dO~" (r,O). H.V (r) = -~l 0 dO~I (r, 0 ) ;  T ~  0 

Then  we obtain 
Q 

~ 

H O(r) = 2~rT O, 

d v T-OI dHo v 1 l V~ v 
d---~ H" + ---~--r T* + - = 0 " ,  H . ( R )  = 0 ;  

H, = - dr T, (r') 
R 

V 

Since Q = const = Qo, then Q = O, and this yields 

dH~ TO I + ~ )R drAr' TOll " 

/~. ( r ) )  .v {2 ( 2 )  dr '1 f dO'~ (r', 0') = dr T. (r') = 
R 2~Tor' 4~2T~0 R r' 0 

rl 2~ v v Q ,1 ,v , 
H.  (rl) - H.  (r2) = f dr--  f dO r (r , O') ; 

4~2T0 r 2 r '  0 

D I v 1 . ( r l )  -- H ,  (r2)  

r 1 
In r2 

Q2 rl dr' rl dr" Z~ 2:r 
y - -  y - -  y ao' y ao" 

r 1 16:4T4 in 2 _ r 2 r r 2 r 0 0 
LI  

r 2 

V 
• E [T ( r ' ,  0 ' )  T (r", 0") I - 

Q2DT 

16n4T 4 In 2 r l 
r 2 

2~ ( r l ,  r 2 )  

rl rl Z7 
2 , (q,  r2 ) = f dr~ f d(' f dO' 

r 2 r r 2 r 0 

2.,-r 
f dO "K~, ( r ' ,  r", 0 ' ,  0") , 
0 
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Fig. 1. Output  data  of the dependence of D(DTIx)/DT40* (over a vertical line) 

on Ix. 

where Ka(r', r", 0', 0") is a correlation function {depending on the paramete r  a)  of the form Ka(X, Y), where X = 

(r', 0'),  Y = (r",  0"). 

Now we determine  Tcalc (the calculated value of 73 from the observation data for H~: 

~,J2 _ Q _ ' ! _  '2/  
calci 1 , i 2 In ( rq / r i z ) J  

-1 

U s i n g  the  k n o w n  v a l u e s  of  7,]1.,/2 we c a l c u l a t e  t h e i r  m e a n  v a l u e  TOcalCil,i2 -calci I, i2' 
D[1/Tcalcil,i 2 ] for each pair q ,  i2. 

We assume that  

& v 1 D [ (ril) - __ H .  (ri2). 

In r i-~l 
ri 2 

From Eq. (3) we obtain 

Tcalci I ,i 4zr2 " 

I 1 ] DT 2 a (ril, ri2 ) 

D Tcalci l,i--~ 4 2T4 in 2 ri__[l 
ri 2 

a n d  d i s p e r s i o n  

(3) 

(4) 

We ave rage  Tocalcil,i2 over  all il, i2 and  find T0cal c ( the calculated value of the water  conduct ivi ty 
coefficient),  which will be taken as the sought value of To. Then  we express DT from Eq. (4) and assume it to be 

DT/il ,i2: 

1 21 J 4az2T4 ln2 (ril/ri2) 
DTff/l 'i2 = D ~t a (ril ri2) Tcatc, I ,i 

Having averaged DTffq,i 2 over all q ,  i2, we obtain the mean value (DT){~ and the dispersion D(DT"). 
In model calculations lx played the role of a and the ratio D(DTIX)/DTIo ~ was plotted as a function of lx. 
We present  (for control) the input and output data of the calculation of one model variant.  

Having 10 observational  wells with r i and H i from Table  1 as the input data,  we obtain (as the output 

data) TOcaD c = 730 {see Fig. 1). In Fig. I the curve to the right of the sought value of lx approaches  a constant  value 

{within the accuracy of the graph).  
In the example  given, lx = 120 and DT = 8.02-107. 
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Comparison with the initial data of the direct problem showed the accuracy to be within the limits of the 

accuracy of the hydrogeological measurements and the numerical approximations, with the computer program 

operating an insignificantly small time compared to the solution of the direct problem by the grid method. 

Since the proposed algorithm for the inverse problem employs only dispersions from the input data for 

H~, then it is evident that small fluctuations in H~ will lead to small fluctuations in the output values, so that the 

proposed formulation of the inverse problem is correct. 

N O T A T I O N  

T, water conductivity coefficient; T O and  DT, mean value and dispersion of the water conductivity 

coefficient; Ka(h), correlation function; Q, output; ri, radii; H~, measurement of the head in the j-th well located 

on the circle of radius ri; O, angle in polar coordinates; p, well radius; R, radius of the contour of thje maintained 
V ,  V ,  V 

supply; Ix, linear dimensions of the inhomogeneity element; T H Q, random components of the coefficient of 

water conductivity, the head, and the output. 
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